Friction Basic Concepts

When a body is moving on a surface there is always a friction force opposing the movement whose value depends on the surface finishing and lubrication.

The limit static friction force (F_{SL}) of a body on a surface is the maximum value of the force applied to the static body just before starting the movement. The movement starts when that value is reached.

The static friction force (F_S) is the applied force before the limit static friction force is reached (no movement).

Kinetic friction force (F_k), kinetic friction coefficient (μ_k), normal reaction force (N)

$$F_k = \mu_k \cdot N$$

μ_k – depends on the body material and surface finishing and lubrication

- steel on steel - $\mu_k = 0.57$
- aluminum on steel - $\mu_k = 0.47$
- rubber on concrete - $\mu_k = 0.8$
- wood on wood - $\mu_k = 0.2$
The friction force in the moving surface is a function of the body shape, the fluid viscosity and the body velocity:
\[F_v = b \cdot v \]

- \(F_v \) is the coefficient of viscous friction and
- \(v \) is the body velocity.

Friction force as a function of velocity, is the sum of two components:
- Kinetic friction force \((F_k) \)
- Viscous friction force \((F_v) \)

Note: Pictures from internet resources